Scale-Free Networks, Hyperbolic Geometry, and Efficient Algorithms
نویسنده
چکیده
The node degrees of large real-world networks often follow a power-law distribution. Such scalefree networks can be social networks, internet topologies, the web graph, power grids, or many other networks from literally hundreds of domains. The talk will introduce several mathematical models of scale-free networks (e.g. preferential attachment graphs, Chung-Lu graphs, hyperbolic random graphs) and analyze some of their properties (e.g. diameter, average distance, clustering). We then present several algorithms and distributed processes on and for these network models (e.g. rumor spreading, load balancing, de-anonymization, embedding) and discuss a number of open problems. The talk assumes no prior knowledge about scale-free networks, distributed computing or hyperbolic geometry. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
منابع مشابه
Efficient Embedding of Scale-Free Graphs in the Hyperbolic Plane
Hyperbolic geo metry appears to be intrinsic in many large real networks. We construct and implement a new maximum likelihood estimation algorithm that embeds scale-free graphs in the hyperbolic space. All previous approaches of similar embedding algorithms require a runtime of Ω(n2). Our algorithm achieves quasilinear runtime, which makes it the first algorithm that can embed networks with hun...
متن کاملHyperbolic grids and discrete random graphs
We present an efficient algorithm for computing distances in hyperbolic grids. We apply this algorithm to work efficiently with a discrete variant of the hyperbolic random graph model. This model is gaining popularity in the analysis of scale-free networks, which are ubiquitous in many fields, from social network analysis to biology. We present experimental results conducted on real world netwo...
متن کاملMetric and periodic lines in the Poincare ball model of hyperbolic geometry
In this paper, we prove that every metric line in the Poincare ball model of hyperbolic geometry is exactly a classical line of itself. We also proved nonexistence of periodic lines in the Poincare ball model of hyperbolic geometry.
متن کاملAn Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach
The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]. In [1], Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. They defined the Chen addition and then Chen model of hyperbolic geomet...
متن کاملGeometric Inhomogeneous Random Graphs
For the theoretical study of real-world networks, we propose a model of scale-free randomgraphs with underlying geometry that we call geometric inhomogeneous random graphs (GIRGs).GIRGs generalize hyperbolic random graphs, which are a popular model to test algorithms forsocial and technological networks. Our generalization overcomes some limitations of hyperbolicrandom graphs, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016